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On the generation of surface waves by shear flows 
Part 3. Kelvin-Helmholtz instability 

By JOHN W.MILES 
Department of Engineering, University of California, Loa Angelee 

(Received 4 March 1959) 

The Kelvin-Helmholtz model for the formation of surface waves at the interface 
between two fluids in relative motion is generalized for parallel shear flows. It is 
assumed that phase changes across the flow are negligible and hence that the 
aerodynamic pressure on the wave is in phase with its displacement (rather than 
its slope). A variational formulation is established and leads to the determination 
of appropriately weighted means for the velocity profiles. The principal applica- 
tion is to flow of a light inviscid fluid over a viscous liquid; it is shown that the 
principle of exchange of stabilities is applicable to such a con.f?guration, and a 
critical wind speed in satisfactory agreement with observation is predicted for an 
air-oil interface. The results also are applied to an air-water interface and lead to 
the conclusion that Kelvin-Helmholtz instability of such an interface is unlikely 
at commonly observed wind speeds. A more general formulation of the Kelvin- 
Helmholtz boundary-value problem and variational princjple, allowing for 
variations in both velocity and density, is given in two appendices. 

1. Introduction 
The primary problem to which we shall address the following analysis is the 

investigation of the static stability of the interface (y = 0) between a parallel 
shear flow U( y) of a light inviscid incompressible fluid in y > 0 and a viscous 
liquid at rest in y < 0 when this interface is subjected to the small periodic 

(1 .1 )  
displacement y = qo(x) = $a cos kx, 

where a denotes the root-mean-square displacement and k the wave-number. The 
restriction implicit in our use of the adjective light is 

(1 .2 )  s = pJp- < 1, 

where p+ and p- denote the densities of the upper and lower fluids, while by 
inviscid we imply (but cf. (4.5) below) 

U(y)lkv+ B 1 for Y > Yo, kY0 < 1 7  ( 1 .3a ,  b )  

where v+ denotes the kinematic viscosity of the upper fluid. The restriction 
(1 .3a )  permits the existence of a region (0 < y < yo, say) in which U(y) tends to 
zero, while (1 .3  b )  implies that this region is of negligible significance in so far as it 
is sufficiently thin compared with the wavelength-i.e. in so far as a suitable yo 
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can be chosen. We also observe that our assumption that the lower fluid is at rest 
can be satisfied only approximately for real fluids and implies p-/p+ 9 1 ; however, 
this assumption does not rule out the existence of a surface current, since we may 
define U ( y )  as the velocity relative to the surface. 

We d e b e  static instability to be an instability that does not depend on phase 
changes across the flow; therefore, in the present context, it must be a consequence 
of an aerodynamic pressure that is in phase with the displacement 7, and of the 
same order of magnitude as the gravitational and surface-tension forces resisting 
this displacement. We contrast this aerodynamic pressure with one in phase with 
the slope, which would have to be of the same order of magnitude as (and opposite 
to) the dissipative forces to produce instability. The latter type of instability was 
considered inpart  1 of this study (Miles 1957), where, on the other hand, the 
aerodynamic pressure in phase with the displacement was considered negligible 
compared with other forces of the same phase. 

A rather simpler, but analogous, contrast is presented by a simple oscillator of 
natural (undamped) frequency w,, and damping ratio S (damping + critical 
damping) that is perturbed by a force having components in phase with both 
displacement and velocity and proportional to parameters a and 2/3, respectively. 
For a displacement x(t) ,  we then may write the equation of motion in the form 

~ + 2 ( S w , - p ) ~ + ( w ; - a ) x  = 0.  

If a + (6~,-/3)~ < wg the condition for instability is simply /3 > So,, but, inde- 
pendently of /3, instability will occur if a > w;. It is customary to designate these 
two types of instability as dynamic and static, and we observe that static stability 
(a < wg) is a necessary but not sufficient condition for dynamic stability. 

The simplest models for dynamic or static instability are defined respectively 
by la/w%1, I /3/wol,S < 1,or 1/31 < Sw,anda = O(w;),inanalogywiththerespective 
conditions posed in Parts 1 and 2 of this study. In  the latter instance-i.e. for the 
model assumed here-we say that the principle of exchange of stabilities holds and 
that the transition from stable to unstable motion is a transition from a steady 
flow to a disturbed flow that exhibits an exponential time-growth (at least in the 
immediate vicinity of the critical condition).i Both of these simplified models of 
fluid flow constitute idealizations, to be sure, but they do throw light on two 
distinctly different mechi@sms, the simultaneous treatment of which would 
present a far less tractable problem. 

The Kelvin-Helmholtz (hereinafter abbreviated K-H) model for the problem 
posed in the opening paragraph assumes U to be independent of y in y > 0. It 
predicts instability, within the approximation (1 .2) ,  if (Kelvin 1871; Lamb 1945, 

§ 268) C; = @-I+ (T/p-) k < sU2. ( 1 . 4 ~ )  

t We note that this conclusion depends on the neglect of the shear flow in the lower 
fluid, so that this fluid is a t  rest a t  the transition from stable to unstable motion and no 
work need be done against viscosity to produce instability. The situation would be quite 
different for a shallow (compared with the wavelength) liquid; for then the shear no longer 
would be negligible, even though the flow rate were small, and work would have to be done 
against Viscosity to produce instability. We conclude (perhaps belabouring the obvious) 
that a lower wall should act as a stabilizing constraint. 
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We also may pose this criterion in the alternative and physically more significant 
forms (P- 9 + Tk2) To(”) < - P, = P+kU27,(d’ (1.4b) 
and +(p-g+Tk2)a2 < W, = $p+kU2a2. (1 .4~)  

The left-hand side of (1.4 b) gives the restoring force (per unit area) of gravity and 
surface tension (T) associated with the displacement qo(x) ,  while the right-hand 
side gives the aerodynamic suction (-p,); (1.4b) then predicts instability if the 
aerodynamic suction exceeds the restoring force. Similarly, the left-hand side of 
(1 .4~)  gives the mean potential energy per unit area, while the right-hand side 
gives the mean aerodynamic work per unit area ( v,); (1.44 then predicts 
instability if the aerodynamic work exceeds the potential energy. 

We have identified the wave speed appropriate to the prescribed wave-number k 
by co in (1.4a), but we emphasize that this wave speed has no direct physical 
significance for the question of static stability. The fact that the minimum wind 
speed for K-H instability and the minimum wave speed correspond to the same 
value of k merely reflects the fact that the aerodynamic suction (or work) and the 
inertia force (or kinetic energy) for the wave motion at  fixed wave speed both 
must be proportional to kin consequence of the fact that both are associated with 
a velocity potential of the form Gy,(s) exp ( - k lyl). 

Assuming air over water, each of (1.4a, b,c) predicts that the minimum value 
of U for instability is 660 cmlsec, corresponding to a wavelength of 1.73 cm. This 
instability sometimes has been invoked as an explanation for the generation of 
water waves by wind, although Kelvin (1 87 1) stated only that ‘water with a plane 
level surface is unstable if the velocity of the wind exceeds [660 cm/sec], and that 
‘ thewindwould blow into spin-drift ’ those waves for which ( 1 . 4 ~ )  isnot satisfied.t 
Observation generally has indicated much lower wind speeds than 660 cm/sec for 
water-wave formation, however, and more recent theoretical models (Phillips 
1957; M3les 1957) have offered explanations as to why this should be so; neverthe- 
less, it seems that the K-H mechanism of instability still should be physically 
significant, albeit not responsible for the initial formation of water waves. Thus, 
Munk (1947) has conjectured that certain changes in the appearance of the 
surface of the sea at wind speeds in the neighbourhood of 660cmlsec might be 
indicative of K-H instability, while Francis (1954,1956) has observed initial wave 
formation at an air-oil interface for air speeds roughly approximating that 
predicted by Kelvin’s model. 

We shall find (in Q 4) that allowance for the y-dependence of U in the calculation 
of the aerodynamic suction ( -p,) or work ( W,) yields a critical wind speed for 
an air-oil interface in close agreement with observation but renders the actual 
manifestation of K-H instability for an air-water interface rather unlikely (3 5). 
We remark that these conclusions are in accord with the qualitative picture 
sketched in the second paragraph of this section. That component of aerodynamic 
pressure in phase with the slope of the wave is much more effective for a relatively 
inviscid fluid like water than for a very viscous fluid like oil, whereas static 

t Kelvin also emphasized the probable importance of viscosity and went on to offer 8 

qualitative explanation of wave generation on the baais of the sheltering hypothesis that 
was considered later but more quantitatively by Jeffreys (1924, 1925). 
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instability appears as the more efficient mechanism for the viscous fluid and takes 
precedence in accord with the principle of least work. 

We shall develop in $5 2 and 3 a rather brief analysis that is adequate for the 
problem posed in the opening paragraph and for the specific applications in 
$9 4 and 5. Kelvin-Helmholtz instability may be of interest in problems for which 
the restrictions of the first paragraph are not satisfied,? however, and we also 
shall develop (in Appendices A and B) a more general analysis for the problem in 
which velocity and density have the arbitrary distributions U(y) and p(y)- 
although, in general, we contemplate a discontinuity in p(y)  at y = "and in 
which the interfacial displacement is given by 

y = 42&[eikcX'-co] (1.5) 

in Cartesian co-ordinates X I  and y. Neglecting phase changes across the flow 
(thereby neglecting viscosity in y < 0 as well as y > 0), we may assume c to be 
real up to the critical condition of instability and reduce (1.5) to (1.1) through the 
Gallilean transformation 

x = x1 - ct, 

thereby rendering the disturbed flow steady to an observer in an (x, y)-co-ordinate 
system. 

The K-H model for this more general problem assumes p and U to be dis- 
continuous across y = 0 (from p- top+ and U- to U+) but otherwise neglects their 
y-dependence. These assumptions lead to a solution for the wave speed in the 
form (Kelvin 1871; Lamb 1945, $$232, 268) 

(1.6) 

where 

N 

c = 0 & [Ci - (772 - U 2 ) ] + ,  

denotes an appropriately weighted, mean value of the steady flow, and (cf. ( 1 . 4 4 )  

denotes the square of the wave speed in the absence of the steady flow 
(U+ = U- = 0). Equation (1.7) predicts instability if 

N 

cg <: (UZ- U2)t = (p++p-)-l(p+p-)+IU+-U_I. (1.10) 

We observe that the unstable motion then exhibits an exponential time- 
dependence only in a reference frame moving with the mean speed 0 (but 0 is 
independent of Ic). 

We shall find (in Appendix B) that the result for y-dependent p and U still may 
be cast in the form (1.7), with appropriate generalizations of (1.8) and (1.9). 

t The K-H stability problem for 8 = 1 haa been treated by Carrier (1954) end, for 8 

slightly viscous fluid, by Lessen (1950) and Esch (1957). See also Taylor (1931) and 
Goldstein (1931) for earlier studies on stratified fluids, with particular reference to meteoro- 
logical problem. 
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2. Equations of motion 
We consider small perturbations with respect to a two-dimensional steady 

parallel shear flow in an inviscid incompressible homogeneous fluid of density p. 
Let the disturbed velocity vector be 

where $(x, y) denotes the perturbation stream function. Assuming the x-de- 
pendence ro(z) of (1. I), posing the ‘separation-of-variables ’ solution 

$(x, Y) = row U(Y)f(Y), (2.2) 

and referring to Lighthill’s (1957) study of shear flows (see also Appendix A), we 
find thatf(y) must satisfy 

where the primes imply differentiation with respect to y. Alternatively, we could 
have deduced (2.3) from the inviscid Orr-Sommerfeld equation, which must be 
satisfied by 11.. 

The boundary conditions corresponding to the requirement that the flow must 
be tangential to y = ro(z) as y -+ 0 + and that it must tend to V(y) as y --f co are 

(U2f’)’ - k2U2f = 0, (2.3) 

(2.4a, b)  

or f ( O + )  = 1, f(a) = 0. (2.5a, b) 

We may calculate the aerodynamic perturbation pressure from the Euler 
equation, viz. 

(2.6) 
D q  p- = -vp. 
Dt 

Substituting (2.1) in (2.6) and integrating the x-component of the result, we 

(2.7a, b)  obtain 

where (2.7b) follows from ( 2 . 7 ~ )  in consequence of (2.2). 

P = P( w g  - V,P) = P U 2 ( Y ) f ‘ ( Y )  70(”) ,  

3. Variational formulation 
We may identify (2.3) as a Sturm-Liouville differential equation and hence 

may infer the existence of a variational integral for pa. Multiplying both sides of 
(2.3) byf(y), integrating from O +  to 00, integrating the term (U2f‘)’fby parts, 
imposing (2.5a, b) ,  and evaluating pa from the resulting expression for f ’ (O+) ,  
we obtain 

We may show, by the usual procedures, that the integral on the right-hand side 
of (3.1) is an absolute minimum with respect to variations off(y) about the exact 
solution to (2.3), provided that the variational approximation tof (y) satisfies the 
boundary conditions (2.5a, b) .  A more general derivation of this variational 
principle, based on the principle of least work, is given in Appendix B. 
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Substituting (3.1) in (1.44 and dividing the result through bypkv,(s), we may 
place the critical condition for K-H instability in the form 

S O o  
(3.2) 4 = jJ+ U2(Y) If'"Y)+fczf2(?4ldY. 

It follows from the foregoing variational principle that the substitution of an 
approximate f (y) in (3.2) for a wind profile of prescribed shape will underestimate 
the magnitude of the critical wind speed (at some prescribed level) for K-H 
instability. 

4. Air-oil interface 
Francis (1954), blowing air over an oil having the properties p = 0.875, T = 34, 

and v = 2-5 c.g.s. units, observed an initial formation of surface waves of h = 2 cm 
and c = 1 cm/sec with U = 967 cm/sec at  y = 8 cm.7 Extrapolating his prof3e 
data to y = 0.05 om, the estimated amplitude of the observed waves, he obtained 
a value of U between 500 and 560 cm/sec, which he compared with the value of 
516cm/sec predicted by Kelvin's formula. The agreement is close enough to 
suggest the validity of the K-H effect, but (aside from the fact that the observa- 
tion of amplitude may have been subject to appreciable error) the selection of the 
wind speed at  the elevation of the crests appears rather arbitrary; moreover, 
Ursell(l956) has questioned whether Kelvin's theory may be applied to such a 
viscous fluid. 

We shall attempt to provide a more rational model for an air-oil interface by 
allowing for the y-dependence of U and by admitting viscosity in the oil. We shall 
neglect the mean flow of the oil, on the other hand, assuming it to move uniformly 
with the surface current to a depth of the order of l /k;  a rough calculation, 
assuming laminar flow in the oil, yields I U-I < 1 cm/sec (relative to the surface) 
in the first centimetre below the surface. 

Surface waves on a viscous liquid have been considered by Lamb ( 1945,s 349) ; 
assuming the displacement (1.5) and adding aerodynamic pressure pa to his 
results, we obtain (where the subscript - now refers to the oil) 

W(p-k[c2+4ikvc+4k2v2(,/[1 - (ic/kv)]- 1)]- (p-g+Tk2)},/2aeiMZ'-" =pa, (4.1) 

where v denotes the kinematic viscosity of the oil. Now, by hypothesis, pa must 
be in phase with the surface wave displacement, whence the quantity in braces 
in (4.1) must be real; moreover, the transition from stable to unstable motion 
must be through a neutrally stable motion, corresponding to a real value of c, 
say, c,. Imposing both of these conditions yields 

( 4 4  aikvc, + 4ik2y29{4[1 - (ic,/kv)]} = 0, 

The wavelengths were originally estimated by Francis at 1.0 cm (1954) and 1.5 cm 
(1956), but improvements in photographic technique have since permitted more accurate 
measurements (Francis 1959; see figure 1 of the present paper), and the wavelength for 
initial instability of the same oil now appears to be approximately 2 cm. Francis also found 
(1966) that increasing the viscosity of the oil by a factor of 11.5 increased the observed, 
critical wind speed by only 4 yo. 
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and a little algebra confirms the anticipated result that the only admissible root 
to (4.2) is c, = 0. We conclude that the principle of exchange of stabilities holds 
for K-H instability of a light, inviscid fluid over a viscous liquid and that viscous 
forces in the liquid have no effect on the critical wind speed; we emphasize, 
however, that this result is contingent upon the neglect of the mean flow (relative 
to the surface) in the liquid to a depth of the order of 1 lk . t  

We shall calculate the critical wind speed on the assumption of the logarithmic 
profile (implying turbulent flows) 

U(Y) = U1log (ylz,), Ul = U*/K7 ( 4 . 3 ~ ,  b)  

where U, denotes Prandtl's friction velocity, K + 0-4 (KArmAn's turbulence 
constant), and zo is the effective roughness parameter. This profile cannot be 
valid down to y = 0, but if it is valid down to y = yo (where ky, < 1, but yo need 
not be identical with yo in (1.3a, b ) )  we may show that the error in the following 
calculations is O(ky,) relative to unity. Assuming (provisionally) that the flow 
over the surface of the oil resembles that over a smooth wall, we h d  (Prandtl 
(1952), p. 128) that (4.3) provides a reasonably good estimate of U(y) down to 
yo = 30z0, and that 

O - 3-6U1' 

where v, ( = v+) denotes the kinematic viscosity of the air. The restriction ky, < 1 

(4.4) 
va 2 -- 

then implies 3 - -- 1. 
8kva 50va (4.5) 

This is much more severe than ( 1 . 3 ~ )  if yo is taken as 302, there, but it still is 
satisfied in the subsequent calculations of this section. 

Substituting ( 4 . 3 ~ )  in (3.2), and introducing 6 = ky as the variable of integra- 
tion, we obtain 

c; = su;sum, [ @z + f 21 log2 (I) a6 
k20 

for the determination of the critical value of U,. We recall that the right-hand 
side of (4.6) is an absolute minimum with respect to variations off about the true 
solution to (2.3) provided that the boundary conditions ( 2 . 5 ~ ,  b )  are satisfied. 

An especially simple approximation tof, which not only satisfies (2.5a, b )  but 
also tends to the true solution as I U'/Ukl tends to zero, is provided by 

Substituting (4.7) in (4.6) and evaluating the integral as a Laplace transform, we 

obtain C; = ~ U q [ & ~ ~ + l o g ~  (2ykz0)] ( 4 . 8 ~ )  

= S[~Z2UU2,+ uz(o.o45h)], (4 .8b)  

where log y denotes Euler's constant (y = 1.78 ...) and h the wavelength. 

t Including the shear flow in y < 0 according to (B. 16) and approximatingf by exp (ky) 
in y < 0, we iind that'this shear flow could be important only where exp (2ky)-which 
decreases to 0.04 at  y = - @-is not small. 
1 See Appendix, Part I, for a discussion of the assumptions implicit in approximating a 

turbulent flow by a parallel shear flow for the study of small perturbations. The rather good 
agreement between theory and experiment obtained in this section appeam to lend 
additional support to such a model. 

f (y) = e - h  = e-6. (4.7) 
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We require the minimum value of U, for instability. Sub~tituting ci from 
(1.4a) and zo from (4.4) in (4.8a), differentiating the resulting equation with 
respect to k ,  equating aUq/ak to zero, and solving for k in so far as it occurs 
explicitly (i.e. holding the argument of the logarithm constant), we obtain 

where L = log (U,/kv,). (4.10) 

Substituting (4.9) in (4.8a) then yields 

(4.11) 

which we must solve simultaneously with (4.9) to obtain the minimum value of 
U. and the corresponding wavelength. 

andv, = 0.154c.g.s.unitsand 
solving (4.9) and (4.11) by iteration, we obtain U, = 104cm/sec a t  h = 1.8cm 
( k  = 3.44cm-l). Using the profle data measured by Francis in the first three 
centimetres above the surface (our weighting factor exp ( - 2ky)  being less than 
10-8 for h = 1.8 and y = 3), we deduce U, = 97 cm/sec and zo = 2.3 x cm. 
This value of zo is approximately half that given by (4.4) for the same value of U'; 
allowing for this discrepancy by doubling the argument of L in (4.9) and (4.1 l), we 
obtain the modified, theoretical value U, = 91 cm/sec.t 

Substitutingp- = 0.875, T = 34,s = 1-41 x 

We can improve this last figure by assuming 

N 

n=l 
f = e-C(l+ (4.12) 

in (4.6) and, in accordance with the variational principle, minimizing the right- 
hand side thereof with respect to each of the b,. Including only the first term 
(a,[) in the series, evaluating the resulting integrals as Laplace transforms, and 
minimizing with respect to b,, we obtain 

C t  = su;{[&r2 + 121 - 212[479 + 1 + E + 12]-1}, (4.13 a) 

E = - log (2ykz0) ,  (4.13b) 

in place of (4 .8~) .  The resulting change in (4.9) is negligible (for the numerical 
data considered), while the revised value of U, (based on the revised value of 
zo-i.e. on 1 = log (2U,/kv,)) is 93 cmlsec. We infer, from the proximity of this 
result to that based on the original approximation, that the exact theoretical 
result is not likely to be appreciably larger than 93cmlsec. (That it must be 
larger follows from the variational principle.) 

The agreement between our theoretical value of 93cm/sec and the experi- 
mental value of 97 cm/sec is almost certainly within experimental error (especiauy 

t It should be understood that the problem we have posed msumes the profile to be 
prescribed; taking z,, from experiment then serves only to rectify the provisional aeeump- 
tion (4.4). 
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for the profile measurements); moreover, we should expect the experimental 
value for waves of observable amplitude to exceed the theoretical value for 
neutral stability. The theoretical value of 1.8 cm for the critical wavelength also 
appears to be in excellent agreement with experiment (see figure 1, plate 1). 

There remains a discrepancy between the observed (1 cmlsec) and theoretical 
(zero relative to surface current) values of c, but it appears that the observed 
value of c may be charged to surface current within the accuracy of observation. 
Francis writes (1959): ‘ I  have also just done an experiment to see if your assump- 
tion about the surface velocity of the oil is correct. I sprinkled aluminium dust 
on the oil when the instability was just occurring. The speed of dust particles came 
out at very nearly 0.40 cm/sec (average of 5 tests). Thus your assumption appears 
to be a good one.. . .’ 

5. Air-water interface 
We now apply (3.2) to an air-water interface. We emphasize at the outset, 

however, that the known effectiveness of the component of aerodynamic pressure 
in phase with the slope in producing surface waves renders static stability of at  
most secondary interest, and we seek to determine only its qualitative significance. 

Assuming the logarithmic profile of (4.3), we may take over the results (4.6) to 
(4.8); we do not assume (4.4), however, since the flow at speeds for which K-H 
instability might occur almost certainly would be aerodynamically rough (but 
see last paragraph in this section). 

We consider first the critical wind speed calculated for A = 1.73 cm (the critical 
wavelength for Kelvin’s model), s = 1.2 x om; this value 
of zo was suggested by Ursell(1956), on the basis of Roll’s (1948) results, as being 
representative for moderate wind speeds. Substituting these numbers in ( 4 . 8 ~ )  
yields U, = 200cm/sec, corresponding to a wind speed of roughly 24m/sec at 
10 m above the surface; the assumed value of zo then is much too low, however, 
and the actual critical wind speed (if any) would be even higher. 

We may obtain a more realistic appraisal of the K-H effect by introducing the 
measured pair of values U, = 140cm/sec and zo = 0.26cm (Hay 1955). Sub- 
stituting these datain the right-hand side of (4 .8~)  and assuming A = 10 cm (and 
even this does not render the argument of the logarithm large as, by hypothesis, 
it must be) yields 84 compared with a left-hand side (c;) of 1660. 

It does not appear that the minimum critical wind speed for our model could be 
calculated without severely violating the restriction Icz, < 1 (although available 
information on zo is perhaps too unreliable for certainty on this point), but we 
conclude from the foregoing examples that K-H instability of an air-water 
interface is unlikely at wind speeds for which reliable observations are availhb1e.t 

t It might be thought that the shear flow in the water, being of order at I U+I for 
turbulent flow (continuity of shear stress demanding p-U:- = p+U:+) could be im- 
portant. We have investigated this possibility on the basis of (1.7), (B. 16), and (B. 17), 
with the end result that t& shear flow in the water leads to 0 = U-( - 0.046h) and adds 
t-m increment Qna.3U: to  ( U a -  @) in (1.7). This implies that in* should be replaced by +n* 
in applying (4.8) to an air-water interfme, but the resulting differences in the numerical 
values given above are trivial. 

and zo = 5 x 
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We add that if zo had been evaluated from (4.4), the air-oil calculations would 
have applied also to an air-water interface except for the changes in T and p-. 
Introducing the air-water parameters in (4.9) to (4.11), we obtain a critical value 
of U, = 130cm/sec (corresponding to a wind speed of roughly 17mlsec at 2m 
above the surface). We offer the conjecture that such a critical speed might be 
significant for wind blowing over a water surface that has been contaminated in 
such a way as to inhibit the formation of ripples, thereby rendering the air flow 
aerodynamically smooth. Both Keulegan (1951) and Van Dorn (1953) have 
produced such surfaces through the addition of a detergent, but in neither case 
were wind speeds as high as U, = 130 cmjsec recorded. 

6. Conclusions 
We conclude that the modified Kelvin-Helmholtz model developed herein 

appears adequate to explain the instability of the interface between a fairly 
viscous liquid and an approximately parallel shear flow in air and that the 
dominance of the K-H mechanism then is a consequence of its intrinsically static 
nature, in virtue of which viscous forces cannot inhibit the initial deformation of 
the interface. It appears unlikely, on the other hand, that the K-H mechanism 
could be significant for liquids of small viscosity-in particular, for wind over 
water. 

Appendix A 
Equations of motion for shear flow in an inhomogeneous fluid 

Turning now to the general problem of small perturbations with respect to a two- 
dimensional parallel shear flow U(y) - c in an inviscid, incompressible fluid of 
density po(y), we first write the equations of motion in their so-called intrinsic 
form, using distance measured along (8)  and normal (n)  to a streamline (figure 2) 
as independent variables. The equations of continuity and momentum then read 
(Milne-Thomson 1950, ss4.20-4.25, 19.82) 

ps = 0, vs+env = 0, (A. 1 a, b )  

(A. 2a, b)  

where v denotes the velocity (along the streamline by definition), 0 the angle 
between the streamline and the horizontal, p the perturbed density, and p the 
perturbed pressure. We shall linearize these equations in q(z,y), the vertical 
displacement of a given streamline from its initially horizontal position. 

We first eliminate v, from (A. 2a) through (A. 1 b) ,  after which we may invoke 

(A. 3 a, b )  
the approximations 

Converting differentiation with respect to s and n to differentiation with respect 
to z and y, we then may linearize (A. 1 a) and (A. Za, b)  to obtain 

~ V V ,  = - ps - pg sin 8, pvu20s = - p n  - pg cos 8, 

e = qz, v = u(y ) -c .  

Pr + P&) 7% = 0, 

q = dY) = P,(Y) [U(Y) - Cl2, 

(A. 4) 
(A. 5a, b)  

tA. 6) 

q r x ,  = P x  + rP;(Y) + PdY)  slrr, QTrr = - P, -P93 
where 
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FIGURE 1 (plate 1). Photograph of incipient wave-formation at  critical wind speed for 
oil described in text (Francis 1959). 

MlLES (E'ucirLy p .  592) 
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andPo( y) andpo(y) denote the unperturbed pressure and density. The condition of 
static equilibrium is 

whence we may integrate (A. 4) and (A. 5a) to obtain 

and 

FIGURE 2. The geometry for the intrinsic equations of motion, (A. la, b )  and (A. Za, b) .  

as the linear approximations to the density and pressure. Finally, substituting 
(A. 7) to (A. 9) in (A. 5b), we obtain the linear, self-adjoint partial differential 

(A. 10) 
equation 

where V denotes the conventional nabla operator and 

= V.[q(Y)VY(z ,Y) l -W'(Y)q(s ,Y)  = 0, 

W(Y) = Po(Y) g (A. 11) 

the specific weight.? We have tacitly assumed, in writing (A. 8) to (A. lo), that 
w(y) is continuous; if it is discontinuous qqg could be calculated by direct integra- 
tion of (A. 10) through the discontinuity. 

We shall find it convenient to separate variables by writing 

q(z, Y) = To(")f(Y), (A. 12) 

where qo(z) is given by (1 .1) .  Substituting (A. 12) in (A. lo), we obtain the Sturm- 

(A. 13) 
Liouville equation 

(qf ')' - (k2q + w')f = 0. 

The corresponding boundary conditions, as dictated by the requirements q = qo 
at y = 0 and q -+ 0 as (y \  i co, are 

f(0) = 1, f( kco) = 0. (A. 14a, b)  

t The result (A. 10) was obtained by Lighthill (1957) for three-dimensional perturbations 
in the absence of buoyancy force, i.e. w' = 0. Special cams also were given by Taylor (1931) 
and Goldstein (1931). 
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We observe that if U(y) - c = 0 at, say, y = yc, the differential equation (A. 13) 
has a regular singularity there (in which case the description Sturm-Liouville 
is not strictly applicable), reflecting the fact that viscous and/or non-linear 
effects are not negligible in that neighbourhood. Applying the method of 
Frobenius to (A.13) in this neighbourhood, we find that s u , i e n t  conditions 
for y = yc not to be a branch point for the solution are 

p: = 0, u: $. 0, p:q+pcup,"  = 0, (A. 15a, b, c) 

where the subscript c implies evaluation a t  U = c. We shall assume that these 
conditions are satisfied in the subsequent development with sufficient accuracy to 
justify our neglect of phase changes across the flow; in the special case of constant 

p,"/ku;l << 1. (A. 16) 
density this will be so if 

Assuming the (approximate) satisfaction of (A. 15a, b, c), f (y) still will exhibit a 
simple pole at y = yc, but this singularity is simply a consequence of approxi- 
mating v by U - c near y = yc (rather than a consequence of the neglect of viscous 
forces) and appears only in the streamline displacement, the perturbation velocity 
remaining finite there. 

Appendix B Variational formulation 
Let W, denote the work by the fluid in y 0 on the interfacial wave at y = 0, 
and V, the potential energy of this wave. We shall first show that 

where the y-intervals of integration for W+ and W- are (0 + , co) and ( - 00, 0 - ), 
and the x-interval for both W+ and W- is either any integral number of wave- 
lengths if7 is periodic in x or ( - co, + 00) if7 + 0 as 1x1 + co. We then shall deduce 
the principle of virtual work in the form 

SW, = 0 for S y ( x , O + )  = 0, (B. 2a, b)  

thereby establishing that (B. 1) is a variational integral for the differential 
equation (A. l O ) . i  

A more complete statement of the principle of virtual work (the statement 
(B. 2) refers only to the boundary-value problem for the fluid motionina half-space 
(y 0) with prescribed boundary conditions a t  y = 0) is 

S(W++W_-V,) = 0. (B. 3a) 

We could invoke (B.3a) to obtain a direct formulation for the entire motion, 
without singling out the motion of the interface in any special way. However, such 
a procedure is not advantageous (herein at least) in establishing approximate 
solutions, and we shall use it only to deduce the equation of motion of the inter- 
facial wave for a virtual displacement Syo(x).  Even this is unnecessary for the 

t We also could reverse the argument and deduce (A. 10) from (B. 21, but our chief 
interest in the variational principle is aa a vehicle for the approximation of W,. 
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determination of the wave speed, which we may infer directly from the require- 
ment of conservation of energy, namelyt 

W++W--v, = 0. (B. 3b) 

To prove (B. l ) ,  we first transform the integral of q(V7)Z through Kelvin's 
generalization of Green's theorem (Courant & Hilbert 1931, vol. 1 ,  p. 239) to 

'J- 47y7dx. (B. 4 a )  
obtain 1 

w* = - J = ~ o ~ M 7 ~ x ~ Y + ~  u=o* 

Invoking (A. 10) and identifying qT1/ with p -po through (A. 9) then yields 

(B. 4b)  

which we may identify with the work done on the interface in virtue of the 
(presumed) linearity of p -po in 7. 

To prove (B. 2), we take the variation of (B. 1) to obtain (ibid., p. 181) 

(B. 5 a )  

= TJ- (p-p0)87dx. 
u = o i  

Invoking (B. 2b)  in (B. 5 b )  then yields (B. 2a) .  
Turning to (B. 3a,  b) ,  we have 

(B. 5b)  

for the potential energy associated with surface tension and the buoyancy force, 
where A denotes a jump-operator according to 

A( 1 = ( ),=a=( )y=o+, (Be 7) 

and the x-intervals of integration correspond to those for W, . Taking the variation 
of (B. 6) and combining the result with (B. 5 b ) ,  we obtain 

8(W++W--'v,) = [A~+T7~~-(Aw)7]87dx.  (B. 8) L o  
Invoking (B. 3 a )  for arbitrary 87 then yields 

Ap+TqXx-(Aw)7 = 0, y = 0, (Be 9) 

as otherwise follows directly from the equilibrium of the forces acting on the 
interface. 

We may simplify the foregoing results by separating variables according to 
(1.1) and (A. 12) and replacing the x-integrations by mean values (denoted by 
bars) over a wavelength. We also find it convenient to separate the work done by 

t Equations (B.I)-(B.3a) may be generalized for an arbitrary number of hterfaces, 
but (B. 3b)  provides a direct determination of the wave speed only for a single interface. 
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the hydrodynamic pressure, say Wa+, from that done by the buoyancy pressure 
and include the negative of the latter with the potential energy. We then write 

and 

(B. 1Oa) 

(B. lob) 

(B. l l b )  

where the integral in (B. 11 b) includes the jump in po at y = 0. 
In  the important, special case of constant densities, p+ for y > 0 and p- for 

y < 0, wu+ constitutes a variational integral for the reduced differential equation 
(p; = 0 in (A. 13)) 

[( 7.7 - c)'f']' - k2( U - ~ ) ~ f  = 0, y 0, (B. 12) 

subject to the boundary conditions (A. 14a, b);  moreover, Waf then not only is 
stationary with respect to flrst-order variations off (y) about the true solution to 
(B. 12) but also is positive dehi te  and therefore an absolute minimum with 
respect to variations (Sf (y)) of arbitrary magnitude provided only that the 
approximate f (y) satisfies (A. 14a,b). We also note that (B. l l b )  reduces to 

V = 8a2[(p- -p+) g + T k 2 ]  (B.  13) 
in this special case. 

In  the restricted problem posed in the opening paragraph of $1, we not only 
assume constant densities but also neglect p+ compared with p- and wu- com- 
pared with wa+(U- i 0) and set c = 0. The results of this and the preceding 
appendix then are equivalent to those of $52 and 3. If, in place of c = 0,  we 
neglect c compared with U+ and neglect U- compared with c in the calculation of 
wu+ and Fa-, we obtain 

f = eku in y < 0 and wa- = 8p-c2ka2, (B. 14a, b) 

whence (B. 3 b )  yields the slightly more general result (in place of (3.2)) 

c2 = c; - ES," U'( f '2 + k2f') dy,  (B. 15) 

where ci is given by the left-hand side of (1 .4~) .  The variational principle predicts 
that the substitution of an approximate f ( y )  in (B. 15) will overestimate the 
integral, thereby underestimating both the wave speed IcI and the magnitude of 
the critical wind speed at any prescribed level for a profile of prescribed shape. 
We note, however, that the predicted values of c2 near the critical wind speed (at 
which ca = 0) may be appreciably in error in consequence of its calculation as 
a difference between nearly equal quantities. 

We turn now to the more general problem posed in the closing paragraphs of $ 1. 
Substituting (B. l ob)  and (B. 1lb)in (B. 3 b )  andsolvingforcinsofarasit appears 
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explicitly (it also occurs implicitly through f ), we may place the result in the form 
(1.7), replacing (1.8) and (1.9) by 

N 

(B.16) 

and 

If we assume p o  and U to be independent of y except for discontinuities across 
y = 0, (A. 13) and (A. 14a, b )  are satisfied by f = exp ( - k I yl), and we may reduce 
(B. 16) and (B. 17) to (1.8) and (1.9). 

The foregoing development, in so far as it appeals to classical Sturm-Liouville 
theory (through our references to Courant & Hilbert), requires additional 
justification if q = 0 at  (say) y = yc in the range of integration. We may extend the 
results by excluding the singular region from the area integrals, thereby obtaining 
additional line integrals over y = ye c . The end-result of such a procedure is that 
the results (B. 10) and (B. 11) may be interpreted formally by deforming the path 
of integration around the singular point y = yc; in so far as the conditions 
(A. 15a, b, c )  are satisfied (at least approximately), this procedure then leads to 
finite, real values of w (at least approximately). Unfortunately, however, the 
characterization positive deJinite no longer is appropriate to the integrand over 
the deformed path, and we then may not assert that Vu+ and wu- are absolute 
minima with respect to variations off about the true solution to (B. 12). 

We may circumvent this last difficulty by assuming (in addition to either 
(A. 15a, b, c) or (A. 16)) 

(B. 18) 

noting that this restriction usually must be satisfied if phase variations across the 
flow are to be negligible and the aerodynamic force in phase with the interfacial 
displacement is to be of the same order of magnitude as the restoring forces. We 
then may calculate the work done on a virtual interface at, say, I yI = S through 
(B. lob), after which the energy transferred from shear flow to surface wave in 
0 < IyJ < 6 could be calculated through a direct integration of (A. 13) or (B. 12) 
for small klyl (as in obtaining the inviscid solutions to the Orr-Sommerfeld 
equation). We find, however, that the latter energy is to the former as kS to 1 and 
hence, by hypothesis, negligible. In  fact, we have used (in $5  4 and 5 )  only non- 
singular approximations to f,  and may regard the procedure outlined in this 
paragraph primarily as a justification for such approxim&ions within the frame- 
work of the variational principle. 

I am indebted to T. Brooke Benjamin (Cambridge University), C. S. Cox 
(Scripps Institute of Oceanography) and J. R. D. Francis (Imperial College) for 
valuable discussions and suggestions during the course of the foregoing research, 
and particularly to Mr Francis for providing the photograph in figure 1. I also 
take pleasure in acknowledging support, in the form of a fellowship, from the 
John Simon Guggenheim Memorial Foundation. 
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